Hyperplanes of DW(5, K) containing a quad

نویسنده

  • Bart De Bruyn
چکیده

We prove that every hyperplane of the symplectic dual polar space DW (5, K) that contains a quad is either classical or the extension of a non-classical ovoid of a quad of DW (5, K).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Classical Hyperplanes of DW(5, q)

The hyperplanes of the symplectic dual polar space DW (5, q) arising from embedding, the so-called classical hyperplanes of DW (5, q), have been determined earlier in the literature. In the present paper, we classify non-classical hyperplanes of DW (5, q). If q is even, then we prove that every such hyperplane is the extension of a non-classical ovoid of a quad of DW (5, q). If q is odd, then w...

متن کامل

Hyperplanes of Hermitian dual polar spaces of rank 3 containing a quad

Let F and F′ be two fields such that F′ is a quadratic Galois extension of F. If |F| ≥ 3, then we provide sufficient conditions for a hyperplane of the Hermitian dual polar space DH(5,F′) to arise from the Grassmann embedding. We use this to give an alternative proof for the fact that all hyperplanes of DH(5, q2), q 6= 2, arise from the Grassmann embedding, and to show that every hyperplane of ...

متن کامل

Hyperplanes of DW ( 5 , K ) with K a perfect field of characteristic 2

Let K be a perfect field of characteristic 2. In this paper, we classify all hyperplanes of the symplectic dual polar space DW(5,K) that arise from its Grassmann embedding. We show that the number of isomorphism classes of such hyperplanes is equal to 5+N , where N is the number of equivalence classes of the following equivalence relation R on the set {λ ∈ K |X2 + λX + 1 is irreducible in K[X]}...

متن کامل

Hyperplanes of DW ( 5 , K ) with K a perfect field of characteristic 2 Bart

Let K be a perfect field of characteristic 2. In this paper, we classify all hyperplanes of the symplectic dual polar space DW (5,K) that arise from its Grassmann embedding. We show that the number of isomorphism classes of such hyperplanes is equal to 5 + N , where N is the number of equivalence classes of the following equivalence relation R on the set {λ ∈ K |X2 + λX + 1 is irreducible in K[...

متن کامل

The hyperplanes of DW(5,F) arising from the Grassmann embedding

The hyperplanes of the symplectic dual polar space DW (5,F) that arise from the Grassmann embedding have been classified in [B.N. Cooperstein and B. De Bruyn. Points and hyperplanes of the universal embedding space of the dual polar space DW (5, q), q odd. Michigan Math. J., 58:195–212, 2009.] in case F is a finite field of odd characteristic, and in [B. De Bruyn. Hyperplanes of DW (5,K) with K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 313  شماره 

صفحات  -

تاریخ انتشار 2013